Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Entomopathogenic nematodes (EPNs) exhibit a bending-elastic instability, or kink, before becoming airborne, a feature previously hypothesized but not substantiated to enhance jumping performance. Here, we provide the evidence that this kink is crucial for improving launch performance. We demonstrate that EPNs actively modulate their aspect ratio, forming a liquid-latched α-shaped loop over a slow timescale (1 second), and then rapidly open it (10 microseconds), achieving heights of 20 body lengths and generating power of ∼104watts per kilogram. Using a bioinspired physical model [termed the soft jumping model (SoftJM)], we explored the mechanisms and implications of this kink. EPNs control their takeoff direction by adjusting their head position and center of mass, a mechanism verified through phase maps of jump directions in numerical simulations and SoftJM experiments. Our findings reveal that the reversible kink instability at the point of highest curvature on the ventral side enhances energy storage using the nematode’s limited muscular force. We investigated the effect of the aspect ratio on kink instability and jumping performance using SoftJM and quantified EPN cuticle stiffness with atomic force microscopy measurements, comparing these findings with those ofCaenorhabditis elegans. This investigation led to a stiffness-modified SoftJM design with a carbon fiber backbone, achieving jumps of ∼25 body lengths. Our study reveals how harnessing kink instabilities, a typical failure mode, enables bidirectional jumping in soft robots on complex substrates like sand, offering an approach for designing limbless robots for controlled jumping, locomotion, and even planetary exploration.more » « lessFree, publicly-accessible full text available April 23, 2026
-
Inducibly degradable polymers present new opportunities to integrate tough hydrogels into a wide range of biomaterials. Rapid and inducible degradation enables fast transition in material properties without sacrificing material integrity prior to removal. In pursuit of bioorthogonal chemical modalities that will enable inducible polymer degradation in biologically relevant environments, enamine N-oxide crosslinkers are developed for double network acrylamide-based polymer/alginate hydrogels. Bioorthogonal dissociation initiated by the application of aqueous diboron solution through several delivery mechanisms effectively lead to polymer degradation. Their degradation by aqueous B2(OH)4 solution results in a fracture energy half-life of <10 min. The biocompatibility of the degradable hydrogels and B2(OH)4 reagent is assessed, and the removability of strongly adhered tough hydrogels on mice skin is evaluated. Thermoresponsive PNiPAAm/Alg hydrogels are fabricated and application of the hydrogels as a chemically inducible degradable intraoral wound dressing is demonstrated. It is demonstrated through in vivo maximum tolerated dose studies that diboron solution administered to mice by oral gavage is well tolerated. Successful integration of enamine N-oxides within the tough double network hydrogels as chemically degradable motifs demonstrates the applicability of enamine N-oxides in the realm of polymer chemistry and highlights the importance of chemically induced bioorthogonal dissociation reactions for materials science.more » « lessFree, publicly-accessible full text available February 28, 2026
-
Entomopathogenic nematodes (EPNs) exhibit a bending-elastic instability, or kink, before becoming airborne, a feature hypothesized but not proven to enhance jumping performance. Here, we provide the evidence that this kink is crucial for improving launch performance. We demonstrate that EPNs actively modulate their aspect ratio, forming a liquid-latched closed loop over a slow timescaleO(1 s), then rapidly open itO(10 µs), achieving heights of 20 body lengths (BL) and generating ∼ 104W/Kg of power. Using jumping nematodes, a bio-inspired Soft Jumping Model (SoftJM), and computational simulations, we explore the mechanisms and implications of this kink. EPNs control their takeoff direction by adjusting their head position and center of mass, a mechanism verified through phase maps of jump directions in simulations and SoftJM experiments. Our findings reveal that the reversible kink instability at the point of highest curvature on the ventral side enhances energy storage using the nematode’s limited muscular force. We investigated the impact of aspect ratio on kink instability and jumping performance using SoftJM, and quantified EPN cuticle stiffness with AFM, comparing it withC. elegans. This led to a stiffness-modified SoftJM design with a carbon fiber backbone, achieving jumps of ∼25 BL. Our study reveals how harnessing kink instabilities, a typical failure mode, enables bidirectional jumps in soft robots on complex substrates like sand, offering a novel approach for designing limbless robots for controlled jumping, locomotion, and even planetary exploration.more » « less
-
Abstract The interrelation is explored between external pressure (0.1, 1, and 10 MPa), solid electrolyte interphase (SEI) structure/morphology, and lithium metal plating/stripping behavior. To simulate anode‐free lithium metal batteries (AF‐LMBs) analysis is performed on “empty” Cu current collectors in standard carbonate electrolyte. Lower pressure promotes organic‐rich SEI and macroscopically heterogeneous, filament‐like Li electrodeposits interspersed with pores. Higher pressure promotes inorganic F‐rich SEI with more uniform and denser Li film. A “seeding layer” of lithiated pristine graphene (pG@Cu) favors an anion‐derived F‐rich SEI and promotes uniform metal electrodeposition, enabling extended electrochemical stability at a lower pressure. State‐of‐the‐art electrochemical performance is achieved at 1MPa: pG‐enabled half‐cell is stable after 300 h (50 cycles) at 1 mA cm−2rate −3 mAh cm−2capacity (17.5 µm plated/stripped), with cycling Coulombic efficiency (CE) of 99.8%. AF‐LMB cells with high mass loading NMC622 cathode (21 mg cm−2) undergo 200 cycles with a CE of 99.4% at C/5‐charge and C/2‐discharge (1C = 178 mAh g−1). Density functional theory (DFT) highlights the differences in the adsorption energy of solvated‐Li+onto various crystal planes of Cu (100), (110), and (111), versus lithiated/delithiated (0001) graphene, giving insight regarding the role of support surface energetics in promoting SEI heterogeneity.more » « less
-
Abstract Colloidal Janus particles with well‐controlled parameters are sought for a range of applications in mesoscale self‐assembly, stabilization of Pickering emulsion, and development of multifunctional devices, among others. Herein, a versatile method for fabricating polystyrene‐silica (PS‐SiO2) Janus particles featuring complex shapes and structures is developed by swelling PS@SiO2core–shell spheroids. When the PS encapsulated in a rigid SiO2shell is swollen by a good solvent for PS, the swelling‐induced pressure will result in an uneven distribution of stress acting on the SiO2shell, as determined by the intrinsic symmetry of a spheroid. When the stress reaches a threshold value, the swollen PS will preferentially poke out from equatorial sites on the SiO2shell to form T‐shaped Janus particles comprised of PS and SiO2compartments. The size of the PS portion can be controlled by varying the extent of swelling, while the size, shape, and shell thickness of the SiO2portion are determined by the original PS spheroids and the SiO2coating. This solution‐phase method holds promise to produce Janus particles with diverse shapes, structures, and compositions for various applications. The T‐shaped Janus particles can serve as an emulsifier to effectively stabilize an oil‐in‐water (O/W) Pickering emulsion for at least 35 days.more » « less
-
Active acoustic metamaterials incorporate electric circuit elements that input energy into an otherwise passive medium to aptly modulate the effective material properties. Here, we propose an active acoustic metamaterial with Willis coupling to drastically extend the tunability of the effective density and bulk modulus with the accessible parameter range enlarged by at least two orders of magnitude compared to that of a non-Willis metamaterial. Traditional active metamaterial designs are based on local resonances without considering the Willis coupling that limit their accessible effective material parameter range. Our design adopts a unit cell structure with two sensor-transducer pairs coupling the acoustic response on both sides of the metamaterial by detecting incident waves and driving active signals asymmetrically superimposed onto the passive response of the material. The Willis coupling results from feedback control circuits with unequal gains. These asymmetric feedback control circuits use Willis coupling to expand the accessible range of the effective density and bulk modulus of the metamaterial. The extreme effective material parameters realizable by the metamaterials will remarkably broaden their applications in biomedical imaging, noise control, and transformation acoustics-based cloaking.more » « less
An official website of the United States government
